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Abstract

Learning sentence embeddings from dialogues
has drawn increasing attention due to its low
annotation cost and high domain adaptabil-
ity. Conventional approaches employ the
siamese-network for this task, which obtains
the sentence embeddings through modeling
the context-response semantic relevance by ap-
plying a feed-forward network on top of the
sentence encoders. However, as the seman-
tic textual similarity is commonly measured
through the element-wise distance metrics (e.g.
cosine and L2 distance), such architecture
yields a large gap between training and evaluat-
ing. In this paper, we propose DialogueCSE, a
dialogue-based contrastive learning approach
to tackle this issue. DialogueCSE first in-
troduces a novel matching-guided embedding
(MGE) mechanism, which generates a context-
aware embedding for each candidate response
embedding (i.e. the context-free embedding)
according to the guidance of the multi-turn
context-response matching matrices. Then it
pairs each context-aware embedding with its
corresponding context-free embedding and fi-
nally minimizes the contrastive loss across
all pairs. We evaluate our model on three
multi-turn dialogue datasets: the Microsoft
Dialogue Corpus, the Jing Dong Dialogue
Corpus, and the E-commerce Dialogue Cor-
pus. Evaluation results show that our ap-
proach significantly outperforms the baselines
across all three datasets in terms of MAP and
Spearman’s correlation measures, demonstrat-
ing its effectiveness. Further quantitative ex-
periments show that our approach achieves
better performance when leveraging more di-
alogue context and remains robust when less
training data is provided.

1 Introduction

Sentence embeddings are used with success for
a variety of NLP applications (Cer et al., 2018)
and many prior methods have been proposed with

different learning schemes. Kiros et al. (2015); Lo-
geswaran and Lee (2018); Hill et al. (2016) train
sentence encoders in a self-supervised manner with
web pages and books. Conneau et al. (2017); Cer
et al. (2018); Reimers and Gurevych (2019) pro-
pose to learn sentence embeddings on the super-
vised datasets such as SNLI (Bowman et al., 2015)
and MNLI (Williams et al., 2018). Although the
supervised-learning approaches achieve better per-
formance, they suffer from high cost of annotation
in building the training dataset, which makes them
hard to adapt to other domains or languages.

Recently, learning sentence embeddings from
dialogues has begun to attract increasing atten-
tion. Dialogues provide strong semantic relation-
ships among conversational utterances and are usu-
ally easy to collect in large amounts. Such ad-
vantages make the dialogue-based self-supervised
learning methods promising to achieve compet-
itive or even superior performance against the
supervised-learning methods, especially under the
low-resource conditions.

While promising, the issue of how to effectively
exploit the dialogues for this task has not been suf-
ficiently explored. Yang et al. (2018) propose to
train an input-response prediction model on Reddit
dataset (Al-Rfou et al., 2016). Since they build their
architecture based on the single-turn dialogue, the
multi-turn dialogue history is not fully exploited.
Henderson et al. (2020) demonstrate that introduc-
ing the multi-turn dialogue context can improve
the sentence embedding performance. However,
they concatenate the multi-turn dialogue context
into a long token sequence, failing to model inter-
sentence semantic relationships among the utter-
ances. Recently, more advanced methods such as
(Reimers and Gurevych, 2019) achieve better per-
formance by employing BERT (Devlin et al., 2019)
as the sentence encoder. These works have in com-
mon that they employ a feed-forward network with
a non-linear activation on top of the sentence en-
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coders to model the context-response semantic rel-
evance, thereby learning the sentence embeddings.
However, such architecture presents two limita-
tions: (1) It yields a large gap between training and
evaluating, since the semantic textual similarity is
commonly measured by the element-wise distance
metrics such as cosine and L2 distance. (2) Con-
catenating all the utterances in the dialogue context
inevitably introduces the noise as well as the redun-
dant information, resulting in a poor result.

In this paper, we propose DialogueCSE, a
dialogue-based contrastive learning approach to
tackle these issues. We hold that the semantic
matching relationships between the context and the
response can be implicitly modeled through con-
trastive learning, thus making it possible to elimi-
nate the gap between training and evaluating. To
this end, we introduce a novel matching-guided
embedding (MGE) mechanism. Specifically, MGE
first pairs each utterance in the context with the
response and performs a token-level dot-product
operation across all the utterance-response pairs
to obtain the multi-turn matching matrices. Then
the multi-turn matching matrices are used as guid-
ance to generate a context-aware embedding for the
response embedding (i.e. the context-free embed-
ding). Finally, the context-aware embedding and
the context-free embedding are paired as a training
sample, whose label is determined by whether the
context and the response are originally from the
same dialogue. Our motivation is that once the con-
text semantically matches the response, it has the
ability to distill the context-aware information from
the context-free embedding, which is exactly the
learning objective of the sentence encoder that aims
to produce context-aware sentence embeddings.

We train our model on three multi-turn dialogue
datasets: the Microsoft Dialogue Corpus (MDC)
(Li et al., 2018), the Jing Dong Dialogue Corpus
(JDDC) (Chen et al., 2020), and the E-commerce
Dialogue Corpus (ECD) (Zhang et al., 2018). To
evaluate our model, we introduce two types of
tasks: the semantic retrieval (SR) task and the
dialogue-based semantic textual similarity (D-STS)
task. Here we do not adopt the standard semantic
textual similarity (STS) task (Cer et al., 2017) for
two reasons: (1) As revealed in (Zhang et al., 2020),
the sentence embedding performance varies greatly
as the domain of the training data changes. As a
dialogue dataset is always about several certain do-
mains, evaluating on the STS benchmark may mis-

lead the evaluation of the model. (2) The dialogue-
based sentence embeddings focus on context-aware
rather than context-free semantic meanings, which
may not be suitable to be evaluated through the
context-free benchmarks. Since previous dialogue-
based works have not set up a uniform benchmark,
we construct two evaluation datasets for each dia-
logue corpus. A total of 18,964 retrieval samples
and 4,000 sentence pairs are annotated by seven na-
tive speakers through the crowd-sourcing platform1.
The evaluation results indicate that DialogueCSE
significantly outperforms the baselines on the three
datasets in terms of both MAP and Spearman’s
correlation metrics, demonstrating its effectiveness.
Further quantitative experiments show that Dia-
logueCSE achieves better performance when lever-
aging more dialogue context and remains robust
when less training data is provided. To sum up, our
contributions are threefold:

• We propose DialogueCSE, a dialogue-based
contrastive learning approach with MGE
mechanism for learning sentence embeddings
from dialogues. As far as we know, this is the
first attempt to apply contrastive learning in
this area.

• We construct the dialogue-based sentence em-
bedding evaluation benchmarks for three di-
alogue corpus. All of the datasets will be
released to facilitate the follow-up researches.

• Extensive experiments show that Dia-
logueCSE significantly outperforms the
baselines, establishing the state-of-the-art
results.

2 Related Work

2.1 Self-supervised Learning Approaches
Early works on sentence embeddings mainly focus
on the self-supervised learning approaches. Kiros
et al. (2015) train a seq2seq network by decod-
ing the token-level sequences of the context in the
corpus. Hill et al. (2016) propose to predict the
neighboring sentences as bag-of-words instead of
step-by-step decoding. Logeswaran and Lee (2018)
perform sentence-level modeling by retrieving the
ground-truth sentence from candidates under the
given context, achieving consistently better perfor-
mance compared to the previous token-level mod-
eling approaches. The datasets used in these works

1All the datasets will be publicly available at
https://github.com/wangruicn/DialogueCSE
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are typically built upon the corpus of web pages
and books (Zhu et al., 2015). As the semantic con-
nections are relatively weak in these corpora, the
model performances in these works are inherently
limited and hard to achieve further improvement.

Recently, the pre-trained language models such
as BERT (Devlin et al., 2019) and GPT (Radford
et al.) yield strong performances across many
downstream tasks (Wang et al., 2018). However,
BERT’s embeddings show poor performance with-
out fine-tuning and many efforts have been devoted
to alleviating this issue. Zhang et al. (2020) propose
a self-supervised learning approach that derives
meaningful BERT sentence embeddings by maxi-
mizing the mutual information between the global
sentence embedding and all its local context em-
beddings. Li et al. (2020) argue that BERT induces
a non-smooth anisotropic semantic space. They
propose to use a flow-based generative module to
transform BERT’s embeddings into isotropic se-
mantic space. Similar to this work, Su et al. (2021)
replace the flow-based generative module with a
simple but efficient linear mapping layer, achieving
competitive results with reported experiments in
BERT-flow.

Lately, the contrastive self-supervised learning
approaches have shown their effectiveness and
merit in this area. Wu et al. (2020); Giorgi et al.
(2020); Meng et al. (2021) incorporate the data
augmentation methods including the word-level
deletion, reordering, substitution, and the sentence-
level corruption into the pre-training of deep Trans-
former models to improve the sentence represen-
tation ability, achieving significantly better perfor-
mance than BERT especially on the sentence-level
tasks (Wang et al., 2018; Cer et al., 2017; Conneau
and Kiela, 2018). Gao et al. (2021) apply a twice
independent dropout to obtain two same-source em-
beddings from a single sentence as input. Through
optimizing their cosine distance, SimCSE achieves
remarkable gains over the previous baselines. Yan
et al. (2021) empirically study more data augmen-
tation strategies in learning sentence embeddings,
and it also achieves remarkable performance as
SimCSE. In this work, we propose the MGE mech-
anism to generate a context-aware embedding for
each candidate response based on its context-free
embedding. Different from previous methods built
upon the data augmentation strategies, MGE lever-
ages the context to accomplish this goal without
any text corruption.

For dialogue, Yang et al. (2018) train a
siamese transformer network with single-turn input-
response pairs extracted from Reddit. Such ar-
chitecture is further extended in (Reimers and
Gurevych, 2019) by replacing the transformer en-
coder with BERT. Henderson et al. (2020) propose
to leverage the dialogue context to improve the sen-
tence embedding performance. They concatenate
the multi-turn dialogue context into a long word
sequence and adopt a similar architecture as (Yang
et al., 2018) to model the context-response match-
ing relationships. Our work is closely related to
their works. We propose a novel dialogue-based
contrastive learning approach, which directly mod-
els the context-response matching relationships
without an intermediate MLP. We also consider
the interactions between each utterance in the dia-
logue context and the response instead of simply
treating the dialogue context as a long sequence.

2.2 Supervised Learning Approaches

The supervised learning approaches mainly focus
on training classification models with the SNLI and
the MNLI datasets (Bowman et al., 2015; Williams
et al., 2018). Conneau et al. (2017) demonstrate
the superior performance of the supervised learn-
ing model on both the STS-benchmark (Cer et al.,
2017) and the SICK-R tasks (Marelli et al., 2014).
Based on this observation, Cer et al. (2018) further
extend the supervised learning to the multi-task
learning by introducing the QA prediction task, the
Skip-Thought-like task (Henderson et al., 2017;
Kiros et al., 2015), and the NLI classification task,
achieving significant improvement over InferSent.
Reimers and Gurevych (2019) employ BERT as
sentence encoders in the siamese-network and fine-
tune them with the SNLI and the MNLI datasets,
achieving the new state-of-the-art performance.

3 Problem Formulation

Suppose that we have a dialogue
dataset D = {Si}Ki=1, where Si =
{u1, · · · , uk−1, r, uk+1, · · · , ut} is the i-th dia-
logue session in D with t turn utterances. r is the
response and Ci = {u1, · · · uk−1, uk+1, · · · , ut}
is the bi-directional context around r. We omit the
subscript i in the following paragraph and use S,C
instead of Si, Ci for brevity.

To generate the contrastive training pairs, we
introduce two embedding matrices for r, named
context-free embedding matrix and context-aware
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Figure 1: Model architecture. (1) We use BERT to encode the multi-turn dialogue context and the responses, all of
the BERT encoders share the same parameters. (2) The matching-guided embedding (MGE) mechanism performs
the token-level matching between each utterance and a response, generates multiple refined embeddings across
turns. (3) All refined embedding matrices are aggregated to form a context-aware embedding matrix, which is
further pooled along the sequence dimension.

embedding matrix. Specifically, we first encode r
as an embedding matrix R̄. Since R̄ is encoded in-
dependently of the dialogue context, it is treated as
the context-free embedding matrix. Then we gen-
erate a corresponding embedding matrix R̃ based
on R̄ according to the guidance of C. R̃ is treated
as the context-aware embedding matrix. As C and
r are derived from the same dialogue, (R̄, R̃) natu-
rally forms a positive training pair. To construct a
negative training pair, we first sample an utterance
r′ from a dialogue randomly selected from D. r′ is
encoded as the context-free embedding matrix R̄′

based on which a context-aware embedding matrix
R̃′ is generated through the completely identical
process. (R̄′, R̃′) is treated as a negative training
pair. For each response r, we generate a positive
training pair (since there is only one ground-truth
response for each context) and multiple negative
training pairs. All the training pairs are then passed
through the contrastive learning module.

It is worth to mention that there is no difference
between sampling the response or the context as
they are symmetrical in constructing the negative
training pairs. But we prefer the former as it is
more straightforward and in accordance with the
previous retrieval-based works for dialogues. With
all the training samples at hand, our goal is to min-
imize their contrastive loss, thus fine-tuning BERT
as a context-aware sentence encoder.

4 Our Approach

Figure 1 shows the model architecture. Our model
is divided into three stages: sentence encoding,
matching-guided embedding, and turn aggregation.
We describe each part as below.

4.1 Sentence Encoding

We adopt BERT (Devlin et al., 2019) as the sen-
tence encoder. Let u represent a certain utterance
in C. u and r are first encoded as two sequences of
output embeddings, which is formulated as:

{u1,u2, · · · ,un} = BERT(u), (1)

{r1, r2, · · · , rn} = BERT(r), (2)

where ui, rj represent the i-th and the j-th out-
put embedding derived from u and r respectively.
n is the maximum sequence length of both input
sentences. ∀i, j ∈ 1, 2, · · · , n, the shapes of ui
and rj are 1 × d, where d is the dimension of
BERT’s outputs. We stack {u1,u2, · · · ,un} and
{r1, r2, · · · , rn} to obtain the context-free embed-
ding matrices Ū and R̄, whose shapes are both
n× d.

4.2 Matching-Guided Embedding

The matching-guided embedding mechanism per-
forms a token-level matching operation on Ū and R̄
to form a matching matrix M, which is formulated
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as:

M =
Ū
(
R̄
)T

√
d

, (3)

Then it generates a refined embedding matrix R̂
based on the context-free embedding matrix R̄,
which is given by:

R̂ = MR̄ (4)

R̂ is a new representation of r from the perspective
of the utterance u. Note that as u is only a sin-
gle turn utterance in C, we generate t− 1 refined
embedding matrices for r in total.

4.3 Turn Aggregation
After obtaining all of the refined embedding ma-
trices across turns, we consider two strategies to
fuse them to obtain the final context-aware embed-
ding matrix R̃. The first strategy adopts a weighted
sum operation based on the attention mechanism,
formulated by:

R̃ =
∑
i

αiR̂i, (5)

where i ∈ {1, · · · , k − 1, k + 1, · · · , t} and R̂i

is the refined embedding matrix corresponding to
the i-th turn utterance in the context. The attention
weight αi is decided by:

αi =
exp(FFN(R̂i))∑
j exp(FFN(R̂j))

, (6)

where FFN is a two-layer feed-forward network
with ReLU (Nair and Hinton, 2010) activation func-
tion. We denote this strategy as I1. The second
strategy I2 directly sums up all the refined embed-
dings across turns, which is defined as:

R̃ =
1

t− 1

∑
i

R̂i, (7)

For the negative sample r′, we apply the same
procedure to generate the context-free embedding
matrix R̄′ and the context-aware embedding R̃′.
Each context-aware embedding matrix is then
paired with its corresponding context-free embed-
ding matrix to form a training pair.

As mentioned in the introduction, MGE holds
several advantages in modeling the context-
response semantic relationships. Firstly, the token-
level matching operation acts as a guide to distill

the context-aware information from the context-
free embedding matrix. Meanwhile, it provides
rich semantic matching information to assist the
generation of the context-aware embedding matrix.
Secondly, MGE is lightweight and computationally
efficient, which makes the model easier to train
than the siamese-network-based models. Finally
and most importantly, the context-aware embed-
ding R̃ shares the same semantic space with R̄,
which enables us to directly measure their cosine
similarity. This is the key to successfully model the
semantic matching relationships between the con-
text and the response through contrastive learning.

4.4 Learning Objective

We adopt the NT-Xent loss proposed in (Oord et al.,
2018) to train our model. The loss L is formulated
as:

L = − 1

N

N∑
i=1

log
esim(R̄i,R̃i)/τ∑M
j=1 e

sim(R̄j ,R̃j)/τ
, (8)

where N is the number of all the positive training
samples and M is the number of all the training
pairs associated with each positive training sample
r. τ is the temperature hyper-parameter. sim(·, ·)
is the similarity function, defined as a token-level
pooling operation followed by the cosine similarity.

Once the model is trained, we take the mean
pooling of BERT’s output embeddings as the sen-
tence embedding.

5 Experiments

We conduct experiments on three multi-turn di-
alogue datasets: the Microsoft Dialogue Corpus
(MDC) (Li et al., 2018), the Jing Dong Dialogue
Corpus (JDDC) (Chen et al., 2020), and the E-
commerce Dialogue Corpus (ECD) (Zhang et al.,
2018). Each utterance in these three datasets is
originally assigned with an intent label, which is
further leveraged by us in the heuristic strategy to
construct the evaluation datasets.

5.1 Experimental Setup

5.1.1 Training
Table 1 shows the statistics information of these
three datasets. The Microsoft Dialogue Corpus is a
task-oriented dialogue dataset. It consists of three
domains, each with 11 identical intents. The Jing
Dong Dialogue Corpus is a large-scale customer
service dialogue dataset publicly available from
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Dataset MDC JDDC ECD

# Total dialogues 10,087 1,024,196 1,020,000
# Total turns 74,685 20,451,337 7,500,000
# Total words 190,952 150,716,172 49,000,000
# Total intents 11 289 207

Table 1: Statistics of the datasets.

JD2. Although the dataset collected from the real-
world scenario is quite large, it contains much noise
which brings great challenges for our model. The
E-commerce Dialogue Corpus is a large-scale dia-
logue dataset collected from Taobao3. The released
dataset takes the form of the response selection task.
We recover it to the dialogue sessions by dropping
the negative samples and splitting the context into
multiple utterances. We pre-process these datasets
by the following steps: (1) We combine the consec-
utive utterances of the same speaker. (2) We discard
the dialogues with less than 4 turns in JDDC and
ECD since such dialogues are usually incomplete
in practice.

5.1.2 Evaluation
We introduce the semantic retrieval (SR) and the
dialogue-based STS (D-STS) tasks to evaluate our
model. For the SR task, we construct evaluation
datasets by the following steps: (1) we sample a
large number of sentences with the intent labels as
candidates. (2) the candidates are annotated with
binary labels indicating whether the given sentence
and its intent label are consistent. The inconsistent
instances are directly discarded from the candidates.
(3) for each sentence, we retrieval 100 sentences
through BM25 (Robertson and Zaragoza, 2009)
from the candidates, and assign each candidate
sentence a label by whether its intent is consistent
with the target sentence. We limit the number of
positive samples to a maximum of 30 and keep
approximately 7k, 7k, and 4k samples for MDC,
JDDC, and ECD respectively.

For the D-STS task, we sample the sentence
pairs from the dialogues following the heuristic
strategies proposed by (Cer et al., 2017) to en-
sure there are enough semantically similar samples.
The heuristic strategies include unigram-based and
w2v-based KNN retrieval methods and random
sampling from the candidates with the same in-
tent labels. The sentence pairs are further anno-
tated through the crowd-sourcing platform, with

2https://www.jd.com
3https://www.taobao.com

five degrees ranging from 1 to 5 according to their
semantic relevance. We use the median number of
annotated results as the semantic relevance degrees,
obtaining 1k, 2k, and 1k sentence pairs for MDC,
JDDC, and ECD respectively.

All annotations are carried out by seven native
speakers. For the SR task, we adopt the Mean
average precision (MAP) and the Mean reciprocal
rank (MRR) metrics. Following previous works,
we adopt Spearman’s correlation metric for the D-
STS task to assess the quality of the dialogue-based
sentence embeddings.

5.2 Baselines

We evaluate our model against the two groups of
baselines: self-supervised learning methods and
dialogue-based self-supervised learning methods.
The former is not designed for dialogues while the
latter is.

5.2.1 Self-supervised learning methods
In this line, we consider the BERT-based meth-
ods, which include BERT (Devlin et al., 2019),
domain-adaptive BERT (Gururangan et al., 2020),
BERT-flow (Li et al., 2020), and BERT-whitening
(Su et al., 2021). "Domain-adaptive BERT" means
that we run continue pre-training with the dialogue
datasets. BERT-flow and BERT-whitening are two
BERT-based variants that transform BERT’s sen-
tence embedding to the isotropic semantic space.

For BERT, we use the [CLS] token embedding
(denoted as BERT-CLS) and the average of the se-
quence output embeddings (denoted as BERT-avg)
as the sentence embedding, and the same is true
for domain-adaptive BERT. It should be noted that
in related sentence embedding researches, domain-
adaptive BERT is rarely considered since the train-
ing datasets are relatively small. Fortunately, the
large-scale dialogue datasets allow us to explore
whether the domain-adaptive pre-training is helpful
for our tasks. We also adopt the average of GloVe
word embeddings (Pennington et al., 2014) (de-
noted as Avg. GloVe) as the sentence embedding
to compare with our results.

5.2.2 Dialogue-based self-supervised learning
methods

In this line, we mainly consider the siamese-
networks commonly applied in dialogue-based re-
searches. Considering none of the previous works
(Yang et al., 2018; Henderson et al., 2020) employs
the pre-trained language model as encoder, we re-
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Model Microsoft Corpus Jing Dong Corpus E-commerce Corpus
Corr. MAP MRR Corr. MAP MRR Corr. MAP MRR

Self-supervised models

Avg. GloVe embeddings 36.64 31.59 40.91 39.61 45.94 59.53 19.80 46.14 63.68
BERT-CLS 22.34 29.54 35.94 21.40 45.05 59.58 16.61 47.75 65.91
BERT-avg 40.95 32.10 43.01 50.89 49.08 64.54 43.68 51.77 70.79
BERT-flow 45.56 33.13 40.86 65.11 49.53 64.30 55.04 52.16 71.06
BERT-whitening 26.70 32.09 43.01 61.57 49.08 64.54 47.64 51.77 70.80

BERT(adapt)-CLS 27.35 31.30 39.83 26.49 48.51 65.70 33.91 51.75 74.68
BERT(adapt)-avg 42.81 32.53 43.49 72.60 53.03 66.99 74.26 59.32 76.89
BERT(adapt)-flow 50.17 34.32 41.62 73.32 53.42 67.00 74.31 59.77 76.48
BERT(adapt)-whitening 29.68 32.53 43.48 67.18 53.04 67.01 57.22 59.33 76.84

Dialogue-based self-supervised models

SiameseBERTS 77.95 76.26 84.92 75.70 61.92 74.44 74.83 65.84 79.88
SiameseBERTM 76.70 73.81 85.09 76.85 62.45 74.64 75.45 66.24 80.58

DialogueCSEI1 80.13 87.26 85.89 80.60 66.54 74.79 81.79 68.70 79.89
DialogueCSEI2 82.36 91.40 90.45 81.22 68.02 79.52 83.94 69.32 81.20

Table 2: Evaluation results on the dialogue-based semantic textual similarity (D-STS) task and the semantic re-
trieval (SR) task. Corr. refers to Spearman’s correlation metric for the D-STS task. MAP and MRR are metrics for
the SR task. Reported numbers are in percentages.

implement two BERT-based siamese-network mod-
els according to their original approaches. The
first baseline SiameseBERTs is a siamese-network
which shares the architecture with (Yang et al.,
2018; Reimers and Gurevych, 2019). It is equipped
with a non-linear activation function in the match-
ing layer to model the heterogeneous matching re-
lationships between the context and the response4.
The second baseline SiameseBERTm has the sim-
ilar architecture as (Henderson et al., 2020). It
flattens the multi-turn context and takes the token
sequence as input. There is also an MLP layer on
top of the sentence encoders.

5.3 Implementation Details

Our approach is implemented in Tensorflow (Abadi
et al., 2016) with CUDA 10.0 support. For all
datasets, we continue pre-training BERT for ap-
proximately 0.5 epochs to improve its domain adap-
tion ability as well as keeping the general domain
information as much as possible. During the con-
tinue pre-training stage, we use a masking probabil-
ity of 0.15, a learning rate of 2e-5, a batch size of
50, and a maximum of 10 masked LM predictions
per sequence. During the contrastive learning stage,
we freeze the bottom 6 layers of BERT to prevent
catastrophic forgetting which simultaneously en-

4We use "heterogeneous" to describe the matching rela-
tionships for context-response pairs since they have different
semantic meanings. As a comparison, the NIL-like sentence
pairs have the "homogeneous" matching relationships.

ables the model to be trained with larger batch size.
Such a setting achieves the best performance in
our experiments. The batch size, the learning rate,
and the number of context turns are set to 20, 5e-5,
and 3 respectively. The maximum sequence length
is set to 100, 50, 50 for JDDC, MDC, and ECD
for both continue pre-training stage and contrastive
learning stage. All models are trained on 4 Tesla
V100 GPUs.

5.4 Evaluation Results

Table 2 shows the main experimental results on the
three datasets. From the table, we can observe that
our model achieves the best performance in terms
of all metrics across the three datasets. Compared
to the results of the siamese-networks, our model
achieves at least 4.41 points (77.95→ 82.36), 4.37
points (76.85→ 81.22), and 8.49 points (75.45→
83.94) in terms of Spearman’s correlation on MDC,
JDDC, and ECD respectively. It also improves the
MAP metric by 14.84 points (76.26→ 91.40), 5.57
points (62.45→ 68.02), and 3.08 points (66.24→
69.32) in terms of MAP metric on the three datasets.
There are even larger improvements between Di-
alogueCSE and the domain-adaptive baselines in-
cluding BERT(adapt) and its variants. We attribute
this improvement to two main reasons: First, by in-
troducing contrastive learning, DialogueCSE elim-
inates the gap between training and evaluating,
gaining significant improvements on both SR and
D-STS tasks. Second, DialogueCSE models the
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semantic relationships in each utterance-response
pair, which distills the important information at
turn-level from the multi-turn dialogue context and
achieves better performance.

Moreover, by comparing the performances of
DialogueCSEI1 and DialogueCSEI2 , we find that
the weighted sum aggregation strategy surprisingly
brings a significant deterioration on all metrics. We
consider that this is because the weighted sum oper-
ation breaks down the turn-level unbiased aggrega-
tion process. Since the attention mechanism tends
to provide shortcuts for the model to achieve its
learning objective, the long-tail utterances in the
context may be partially ignored, thus leading to a
decline in embedding performance. We hold that
we can completely dismiss the weighted sum ag-
gregation strategy in DialogueCSE since the token-
level matching operation in MGE has implicitly
served this role.

We also notice that BERT(adapt) achieves signif-
icantly better performance than the original BERT,
especially on JDDC and ECD. It demonstrates the
importance of continued pre-training with the in-
domain training data. Without such procedure, the
in-domain data can’t be fully exploited, making
it difficult for the model to achieve satisfactory
performance. This also indicates that the MLM
pre-training task is indeed a powerful task to learn
effective sentence embeddings from texts, espe-
cially when the domain training data is sufficient.

5.5 Discussion

We conduct comparison and hyper-parameter ex-
periments in the following section to study how our
model performs with different numbers of turns,
data scales, temperature hyper-parameter, and num-
bers of negative samples.

5.5.1 Comparison with Baseline
In this section, we choose SiameseBERTm as a
comparison method. MAP and Spearman’s corre-
lation metrics are adopted in these experiments.

Impact of turn number. Figure 2 shows the
performance of our model and the baseline under
different numbers of turns on all datasets. From
the results, we observe that our model is indeed
benefited from the multi-turn dialogue context, and
it exhibits consistently better performance than the
baseline. The performance of our model increases
as the turn number increases until it approximately
arrives at 3. When the turn number goes bigger,
the performance of both models begins to drop.

We believe that in this case, adding more dialogue
context will bring too much noise. Since MGE
acts as a noise filter at both token and turn level,
it makes the model more robust when using more
context turns.
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Figure 2: Impact of turn number.

Impact of data scale. We further explore
whether our model is robust when fewer training
samples are given. we select JDDC and ECD in
this experiment since they are large-scale and top-
ically diverse, which is suitable for simulating a
few-shot learning scenario. Figure 3 shows the
performances of our model and the baseline under
different numbers of training dialogues.
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Figure 3: Impact of data scale.

As the figure reveals, the performance gaps be-
tween our model and the baseline are even larger
when fewer training dialogue sessions are given.
Particularly, when using only a few dialogues, our
model can achieve even superior performance over
the SiameseBERT trained on larger datasets, espe-
cially on the D-STS task. We think this is reason-
able since the siamese-networks introduce a large
amount parameters to model the semantic match-
ing relationships, while our model accomplishes
this goal without introducing any additional param-
eters.

5.5.2 Hyper-parameter Evaluations
We further conduct experiments on JDDC and EDC
to study how our model is influenced by the temper-
ature τ and the number of negative samples. The
MDC dataset is excluded here since the semantics
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Temperature 0.05 0.1 0.2 0.5

JDDC Corr. 80.05 81.22 80.82 79.85
MAP 67.19 68.02 67.55 68.63

ECD Corr. 82.24 83.94 84.24 83.76
MAP 67.98 69.32 69.63 69.11

Table 3: Impact of temperature.

of its utterances are highly centralized around a few
top intents.

Impact of temperature. Table 3 shows the ex-
perimental results with different τ values. We find
that the Spearman’s correlations increase monoton-
ically as τ increases until 0.1 for JDDC and 0.2
for ECD, then they begin to drop. The MAP met-
rics also increase as τ increases until 0.1 for both
datasets, but they remain stable as τ varies from
0.1 to 0.5. We consider this is due to the coarse-
grained nature of the SR task. When τ approaches
0.1, our model can gradually distinguish among dif-
ferent fine-grained semantics, thus achieving better
performance on both SR and D-STS tasks. As τ
continues to increase, the model forces the sen-
tence embeddings to be closer, resulting in a de-
crease in Spearman’s correlation. However, as all
positive samples in the candidates have identical
labels, such degradation may not be fully reflected
through the ranking metric (e.g. MAP) or even be
covered as the number of retrieved positive samples
changes.

Impact of negative samples. We vary the num-
ber of negative samples for each positive sample
within {1, 4, 9, 19}. Table 4 shows the experimen-
tal results, from which we find that both metrics
improve slightly when the number of negative sam-
ples increases. Considering the similar observation
in (Gao et al., 2021; Yan et al., 2021), we conclude
this phenomenon may be related to the discrete
nature of language. Specifically, as the genera-
tion of the sentence embeddings in our approach
is guided and constrained by the token-level inter-
action mechanism, our model is more robust than
the other contrastive learning approaches and is
even effective when only one negative sample is
provided.

6 Conclusion

In this work, we propose DialogueCSE, a dialogue-
based contrastive learning approach to learn sen-
tence embeddings from dialogues. We also propose
uniform evaluation benchmarks for evaluating the

# Negative samples 1 4 9 19

JDDC Corr. 80.60 80.85 81.22 81.56
MAP 67.48 67.69 68.02 68.63

ECD Corr. 82.55 83.14 83.94 84.12
MAP 68.56 68.87 69.32 69.56

Table 4: Impact of negative samples.

quality of the dialogue-based sentence embeddings.
Evaluation results show that DialogueCSE achieves
the best result over the baselines while adding no
additional parameters. In the next step, we will
study how to introduce more interaction informa-
tion to learn the sentence embeddings and try to
incorporate the contrast learning method into the
pre-training stage.
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Pei-Hao Su, Tsung-Hsien Wen, and Ivan Vulić.
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